Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
An. acad. bras. ciênc ; 89(4): 3005-3013, Oct.-Dec. 2017. tab, graf
Article in English | LILACS | ID: biblio-886853

ABSTRACT

ABSTRACT Leishmaniasis and trypanosomiasis are globally widespread parasitic diseases which have been responsible for high mortality rates. Since drugs available for their treatment are highly hepatotoxic, nephrotoxic and cardiotoxic, adherence to therapy has been affected. Thus, the search for new, more effective and safer drugs for the treatment of these diseases is necessary. Natural products have stood out as an alternative to searching for new bioactive molecules with therapeutic potential. In this study, the chemical composition and antiparasitic activity of the essential oil from Protium ovatum leaves against trypomastigote forms of Trypanosoma cruzi and the promastigote forms of Leishmania amazonensis were evaluated. The essential oil was promising against trypomastigote forms of T. cruzi (IC50= 28.55 μg.mL-1) and L. amazonensis promastigotes (IC50 = 2.28 μg.mL-1). Eighteen chemical constituents were identified by Gas Chromatography coupled to Mass Spectrometry (GC-MS) in the essential oil, whose major constituents were spathulenol (17.6 %), caryophyllene oxide (16.4 %), β-caryophyllene (14.0 %) and myrcene (8.4 %). In addition, the essential oil from P. ovatum leaves had moderate cytotoxicity against LLCMK2 adherent epithelial cell at the concentration range under analysis (CC50 = 150.9 μg.mL-1). It should be highlighted that this is the first report of the chemical composition and anti-Trypanosoma cruzi and anti-Leishmania amazonensis activities of the essential oil from Protium ovatum leaves.


Subject(s)
Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Leishmania braziliensis/drug effects , Oils, Volatile/pharmacology , Burseraceae/chemistry , Trypanocidal Agents/isolation & purification , Inhibitory Concentration 50 , Parasitic Sensitivity Tests , Gas Chromatography-Mass Spectrometry
2.
Rev. bras. farmacogn ; 26(3): 296-303, May-June 2016. tab, graf
Article in English | LILACS | ID: lil-784285

ABSTRACT

Abstract Recent publications have highlighted the numerous biological activities attributed to the lignan (-)-cubebin (1), Piper cubeba L. f., Piperaceae, and ongoing studies have focused on its structural optimization, in order to obtain derivatives with greater pharmacological potential. The aim of this study was the obtainment of (1), its semisynthetic derivatives and evaluation of antibacterial activity. The extract of the seeds of P. cubeba was chromatographed, subjected to recrystallization and was analyzed by HPLC and spectrometric techniques. It was used for the synthesis of: (-)-O-methylcubebin (2), (-)-O-benzylcubebin (3), (-)-O-acetylcubebin (4), (-)-O-(N, N-dimethylamino-ethyl)-cubebin (5), (-)-hinokinin (6) and (-)-6.6'-dinitrohinokinin (7). The evaluation of the antibacterial activity has been done by broth microdilution technique for determination of the minimum inhibitory concentration and the minimum bactericidal concentration against Porphyromonas gingivalis, Prevotella nigrescens, Actinomyces naeslundii, Bacteroides fragilis and Fusobacterium nucleatum. It was possible to make an analysis regarding the relationship between structure and antimicrobial activity of derivatives against microorganisms that cause endodontic infections. The most promising were minimum inhibitory concentration =50 µg/ml against P. gingivalis by (2) and (3), and minimum inhibitory concentration =100 µg/ml against B. fragilis by (6). Cytotoxicity assays demonstrated that (1) and its derivatives do not display toxicity.

SELECTION OF CITATIONS
SEARCH DETAIL